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Involvement of Protein Tyrosine Kinase p72* and
Phosphatidylinositol 3-Kinase in CD2-Mediated Granular
Exocytosis in the Natural Killer Cell Line, NK3.3'

Hisanori Umehara,** Jian-Yong;Huang,* Takeshi Kono," Fazal H. Tabassam,*
Toshiro Okazaki,* Eda T. Bloom,* and Naochika Domae*

The granular exocytosis pathway is one mechanism by which NK cells and CTLs induce cytolysis of target cells. Triggering
through adhesion molecules such as CD2 and LFA-1 as well as FcyRIll (CD16) can invoke this pathway. CD2 is a cell surface
glycoprotein present on CTLs and NK cells that plays an important role in both cellular adhesion and signal transduction. Here
we report that cross-linking of CD2 as well as CD16 by immobilized Abs enhances granular exocytosis in an NK cell line, NK3.3.
Herbimycin, a protein tyrosine kinase (PTK) inhibitor, or wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (P
3-K), inhibited completely or almost completely CD2- or CD16-mediated granular exocytosis, suggesting the involvement of
protein tyrosine kinases and Pl 3-K in both CD2- and CD16-mediated granular exocytosis. We also observed that cross-linking
of CD2 as well as CD16 enhances p72** tyrosine kinase activity, and this enhancement correlated well with the increased
tyrosine phosphorylation of several cellular proteins, including the adapter protein Shc. Furthermore, we have observed that
cross-linking of CD2 as well as CD16 enhances the P! 3-K activity associated with the tyrosine-phosphorylated cellular proteins
and Shc. These results provide insight into the signaling pathways by which triggering of CD2 and CD16 on NK cells leads to

cytolysis of target cells.

K cells express a low affinity FcyRIIE® (CD16) and are
N believed to mediate immunity against viruses and sur-

veillance against neoplastic transformation. The gran-
ular exocytosis pathway, using lytic mediators, such as perforin,
and several proteases (granzymes) residing within cytoplasmic
granules, is one mechanism by which NK cells or CTLs mediate
cytotoxicity (1). This mechanism induces both necrotic and ap-
optotic death of target cells (2, 3) and can be triggered by CD16
as well as adhesion molecules on NK cells (4, 5). We previously
reported that the B, integrin, LFA-1 (CD11a/CD18), on NK
cells was tyrosine phosphorylated during the generation of LAK
cells, and that cross-linking of LFA-1 on LAK cells enhanced
the production of inositol 1,4,5-triphosphate and induced a Ca®*-
dependent increase in granular exocytosis (6). Kanner et al. re-
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ported that co-cross-linking of LFA-1 with CD3 in T cells in-
creased tyrosine phosphorylation of phospholipase C-y (PLC-y)
and mobilization of intracellular calcium (7). Signaling through
other receptors on NK cells, such as CD2 and CD16, is also re-
ported to induce tyrosine phosphorylation of PLC-v, resulting in
Ca®* influx and cytolytic activity (8~10). Although the protein
tyrosine kinase (PTK) and PLC-y pathways, leading to phospha-
tidvylinositol (PtdIns) breakdown and the mobilization of intracel-
lular calcium, are important in signaling through adhesion mole-
cules, other signaling molecules, such as GTP binding proteins and
phosphatidylinositol 3-kinase (PI 3-K), may be involved in gran-
ular exocytosis by NK cells (11-13).

It is well established that receptor-type tyrosine kinases, such as
platelet-derived growth factor and epidermal growth factor recep-
tors, mediate activation of PI 3-K as well as that of PLC-y (14).
Several lines of evidence demonstrate that stimulation of TCR and
B cell Ag receptors (BCR), which lack tyrosine Kinase domains but
are functionally coupled to PTKs such as p36™* (Lck), p39™"
{Fyn), and pS3/56™" (Lyn), can also mediate Pl 3-K activation
(15-17). PI 3-K consists of an 85-kDa regulatory subunit {p85) and
a 110-kDa catalytic subunit that phosphorylates PtdIns at the 3-D
position of the inositol ring (18, 19). The products of Pl 3-K are
not substrates for PLC-+y and, therefore, must participate in cellular
signaling through a novel mechanism. CD2 is a glycoprotein ad-
hesion molecule present on CTLs and NK cells and reported to be
crucial for the activation of T cells or NK cells via Lek and Fyn (4,
20, 21), which mediate PI 3-K activation (14-17). We, therefore,
hypothesized that signaling through adhesion molecules on NK
cells, such as CD2, involves PI 3-K.

Here we report that cross-linking of CD2 by immobilized Ab
enhances exocytosis of cytoplasmic granules, and that both herbi-
mycin, a tyrosine kinase inhibitor, and wortmannin, a potent and
selective inhibitor of P1 3-K, prevent CD2-mediated granule exo-
cytosis in an NK cell line, NK3.3, suggesting the involvement of
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PTKs and PI 3-K in CD2-mediated granular exocytosis. We fur-
ther observed that cross-linking of CD2 activates the PTK p72**
(Syk), enhances tyrosine phosphorylation of cellular proteins in-
cluding an adapter protein Shc, and enhances PI 3-K activity as-
sociated with tyrosine-phosphorylated proteins and Shc.

Materials and Methods

Cell and cell culture

The human NK cell line, NK3.3, was provided by Dr. Jacki Kornbluth
(University of Arkansas, Little Rock, AR) (22) and maintained in RPMI
1640 medium supplemented with 10% heat-inactivated FCS (Upstate Bio-
technology, Inc., Lake Placid, NY), 2 mM L-glutamine, penicillin, and 2
nM rIL-2 (Shionogi Co., Ltd., Osaka. Japan). NK3.3 cells expressed CD2,
LFA-1a (CD!11a), LFA-18 (CD18), CD45, ICAM-1 (CD54), and FcyRIII
(CD16), but not CD3 or CD28§ (data not shown), characteristics similar to
those of NK cell populations present in peripheral blood.

Abs and reagents

Hybridomas producing Abs against CD1la (LFA-l1a: TS1/22; IgGl),
CDI18 (LFA-1B8: TS1/18; 1gG1), and CD2 (TS2/18; 1gG1) were purchased
from the American Type Culture Collection (Rockville, MD), and
mAbs were purified as previously described (6). Monoclonal anti-
phosphotyrosine Ab (4G10) and polyclonal Abs against the p85 subunit of
PI 3-K and Shc were obtained from Upstate Biotechnology. Control IgG1
(MOPC-31c), N“*-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLTE),
5,5'-bithiobis(2-nitro-benzoic acid), and myelin basic protein (MBP) were
purchased from Sigma Chemical Co. (St. Louis, MO). Anti-FcyRIII
(CD16: B-E16; I1gG1) mAb was purchased from Serotec (Oxford, U.K.).
Anti-human CD28 mAb (TN228; IgGl) was provided by Dr. M. Azuma
(Juntendo University, Tokyo, Japan). Anti-CD45 mAb (UCHLI1; IgG2a)
was purchased from Dako (Glostrup, Denmark). Anti-p72°* (Syk) mAb
and wortmannin were obtained from Wako Pure Chemical Industries (Osa-
ka, Japan), and rabbit anti-human Svk Ab, useful for Western blot analysis,
was provided by Dr. T. Kurosaki (Lederle Laboratory, New York, NY).
Rabbit anti-mouse 1gG mAb was purchased from Cappel (Durham, NC).
The ECL immunodetection system and horseradish peroxidase-conjugated
goat anti-mouse or anti-rabbit [gG mAb were obtained from Amersham
International (Amersham, Aylesbury, U.K.). Polybeads (polystyrene mi-
crospheres, 2.5% solid latex; diameter = 6 um; no. 07312) were purchased
from Polysciences, Inc. (Warrington, PA).

Cross-linking of surface Ags and measurement of BLTE
esterase activity

Flat-bottom microtiter plate wells were coated with 20 pg/ml rabbit anti-
mouse IgG at 4°C overnight. Wells were then washed and incubated with
control IgG1 (MOPC 31c) or Abs against LFA-1a, LFA-18, CD2, CD28,
CD45 (20 pg/ml), and CD16 (1/100 dilution) at 37°C for 1 h, followed by
several PBS washes. NK3.3 cells (2 X 10°) were added in 200 pl of phenol
red-free RPMI 1640 (IBL, Fujioka, Japan) containing 2% FCS and incu-
bated at 37°C for 4 h, and 100-u] aliquots were harvested from each well
for BLTE esterase assay. In some experiments, cells were incubated in the
presence of herbimycin or wortmannin in DMSO at 37°C for 2 h and 20
min before the assay, respectively. The final concentration of DMSO did not
exceed 0.1%. The BLTE esterase assay was adapted to 200 wul for use in
96-well plates (6). Optical density was read at 414 nm on an ELISA microplate
reader (Iwaki, Osaka, Japan), and the percentage of BLTE esterase activity was
calculated as: (experimental BLTE esterase release — spontaneous BLTE es-
terase release)/(maximum BLTE esterase release — spontaneous BLTE ester-
ase release) X 100.

Cell stimulation, solubilization, and immunoprecipitation

Polybeads were prepared as described previously (23), by coating with 20
ug/ml rabbit anti-mouse I1gG, followed by storage with the Ab, and ex-
tensive washing before use. NK3.3 celis (5 X 10°%) were washed and re-
suspended in 100 ul of RPMI 1640 medium and incubated with Abs (20
wng/ml or 1/100 dilution for anti-CD16) for 30 min on ice. After washing,
cells were resuspended in 100 ul of RPMI 1640 containing 2% FCS and
stimulated with rabbit anti-mouse IgG-bound polystyrene beads at a ratio
of 1:2 at 37°C for 3 min in polypropylene round-bottom tubes in a final
volume of 200 pl/tube. The reaction was terminated by the addition of 800
ul of ice-cold RPMI 1640 and centrifuged for 2 min. Cells were solubilized
with lysis buffer containing 50 mM Tris-HCI (pH 7.6), 0.5% Triton X-100,
300 mM NaCl, 5 mM EDTA, 10 pg/ml leupeptin, 10 pg/ml aprotinin, 1
mM PMSF, and 1 mM sodium orthovanadate by gentle rocking at 4°C for
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30 min. Insoluble material was removed by centrifugation, and the super-
natants were subjected to SDS-PAGE for Western blotting or to immuno-
precipitation with protein G beads precoated with the anti-phosphotyrosine
mAb (4G10) or anti-She Ab.

Electrophoresis, Western blotting, and immunoblotting

Cell lysates and immunoprecipitated proteins were eluted by boiling in
SDS-containing sample buffer and fractionated by SDS-PAGE (8%) (24).
Proteins were electrophoretically transferred to polyvinylidene difluoride
(Immobilon-P) membranes (Sigma Chemical Co.). Membranes were
blocked using 10% Blockace (Dainippon Pharmaceutical Co., Ltd., Osaka,
Japan) in 50 mM Tris-HCI (pH 7.5) and 150 mM NaCl overnight. Mem-
branes were incubated for 3 h with anti-phosphotyrosine mAb, 4G10 (1
wug/ml) or anti-p85 subunit, and anti-Shc Ab (1/1000), as indicated, in PBS
containing 0.05% Tween-20 and 10% Blockace. Peroxidase-conjugated
secondary Abs (Amersham) were used at a 1/1000 dilution, and immuno-
reactive bands were visualized using ECL (Amersham).

In vitro kinase assay

The in vitro kinase reaction was essentially as described by Minami et al.
(25). Briefly, anti-Syk immunoprecipitates were washed once with kinase
buffer (25 mM HEPES (pH 7.4), 0.1% Nonidet P-40, 10 mM MgCl,, 3 mM
MnCl,, and | mM orthovanadate) and resuspended in 30 pl of the kinase
buffer containing 2 ug of MBP as the substrate. Reactions were initiated by
the addition of 3.75 uM [y-**PJATP (10 uCi of [y-**P]ATP/sample, 5000
Ci/mmol; Amersham), incubated for 5 min at 25°C, and terminated by the
addition of an equal volume of 2X Laemmli buffer. Samples were sub-
jected to SDS-PAGE (11% gels) under reducing conditions and were elec-
trophoretically transferred to polyvinylidene difluoride membrane filters,
which were treated with 1 N KOH for 2 h at 55°C, fixed, and subjected to
autoradiography. Radioactivity within bands was also estimated using a
Bio-Imaging analyzer (BAS 2000, Fuji Photo Film Co. Ltd., Tokyo, Ja-
pan), corrected for background, and expressed as photostimulated lurmni-
nescence (PSL) arbitrary units.

Measurement of Pl 3-K enzymatic activity

The PI 3-K activity of anti-phosphotyrosine or anti-Shc immunoprecipi-
tates was measured by the method of Whitman et al. (26). Briefly, immu-
noprecipitates were washed twice with lysis buffer, followed by once with
PBS, once with 0.5 M LiCl/0.1 M Tris-HCI, pH 7.5, once with distilled
water, and once with 0.1 M NaCl/l mM EDTA/20 mM Tris-HCI, pH 7.5,
and then assayed for PI 3-K activity. All wash solutions contained 0.2 mM
sodium orthovanadate. To evaluate PI 3-K activity, PtdIns (Sigma Chem-
ical Co.) and [y-*?PJATP (10 uCi/sample, Amersham) were added to the
immunoprecipitates at room temperature for 10 min. PtdIns was suspended
in 10 mM HEPES/I mM EGTA, pH 7.5, sonicated before use, and added
to the immunoprecipitates at a final concentration of 0.2 mg/ml.
[v-*P]ATP was added in a solution of 50 mM ATP, 5 mM MgCl,, and 1
mM HEPES. The lipid-containing organic phase was resolved on oxalate-
coated TLC plates (Silica Gel 60, MCB reagents, Merck, Rahway, NJ),
developed in chloroform/methanol/water/ammonium hydroxide (43/38/7/
5), and lipid species were visualized by autoradiography. Radioactivity
within spots of PtdIns-3'-monophosphate was estimated with a Bio-Imag-
ing analyzer and expressed as PSL arbitrary units.

Results
CD2-mediated granular exocytosis in NK3.3 cells and effects
of herbimycin and wortmannin on BLTE secretion

It has been reported that various surface receptors, such as CD2
and CD16, can participate in target cell lysis via the granular exo-
cytosis pathway (4). Therefore, we first examined whether cross-
linking of CD2 induced granular exocytosis in the NK cell line,
NK3.3. Cross-linking of CD2 on NK3.3 cells enhanced BLTE es-
terase secretion in an Ab-dose dependent manner (Fig. 14). Al-
though CD2 lacks an intrinsic tyrosine kinase domain, it has been
reported to be functionally and physically associated with src fam-
ily tyrosine kinases, Fyn and Lck (27, 28). Therefore, we examined
the effect of a specific tyrosine kinase inhibitor, herbimycin, on
CD2-mediated BLTE esterase release. Herbimycin suppressed
CD2-mediated granular exocytosis in a dose-dependent manner
(data not shown), and treatment of cells with 10 uM herbimycin
significantly reduced CD2- as well as CD]6-mediated granular
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FIGURE 1. Induction of BLTE esterase release by cross-linking of
CD2 and effects of herbimycin and wortmannin on BLTE secretion,
Cross-linking of CD2 enhances BLTE esterase secretion that depends
on the dose of Ab used. NK3.3 cells (5 X 10%) were stimulated with
immobilized CD2 mAb or control IgG1 at the indicated concentration
at 37°C for 4 h. BLTE esterase activity was measured and expressed as
described in Materials and Methods (A). NK3.3 cells were incubated
in the absence or the presence of 10 uM herbimycin for 2 h, then
stimulated with the indicated Abs (1/100 for CD16 mAb or 20 pg/ml
for the others) for 4 h, and supernatants were assayed for BLTE esterase
activity. Herbimycin inhibited CD2- as well as CD16-mediated BLTE
secretion {B). NK3.3 cells were incubated in the absence or the pres-
ence of 1077 M wortmannin for 20 min, then stimulated with the
indicated Abs {1/100 for CD16 mAb or 20 ug/mi for the others) for 4 h,
and supernatants were assayed for BLTE esterase activity, Wortmannin
inhibited CD2- as well as CD16-mediated BLTE secretion (C). These
data are representative of more than three independent experiments.

exocytosis (Fig. 1B). Previously, we reported that cross-linking of
LFA-1 had no effect on BLTE release in fresh NK cells, while it
increased BLTE secretion in LAK cells that had been produced by
IL-2 stimulation of NK cells, suggesting a functional change in
LFA-1 during IL-2 activation (6). A slight or moderate increase in
BLTE secretion following cross-linking of LFA-1 was also ob-
served in NK3.3 cells (Fig. 1, B and C), a finding consistent with
our previous results, since NK3.3 cells are continuously cultured
with IL-2.

Since PI 3-K is reported to be involved in various biologic func-
tions such as membrane ruffling (29), endocytosis (30), and hista-
mine secretion (31), the PI 3-K pathway as well as the PLC-y

Pl 3-KINASE IN CD2-MEDIATED GRANULAR EXOCYTOSIS
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FIGURE 2. Induction of protein tyrosine phosphorylation by cross-
linking of CD2 in NK3.3 cells. NK3.3 cells were treated with the in-
dicated Abs and stimulated using polybeads coupled to rabbit anti-
mouse 1gG Ab at 37°C for 3 min. Detergent-soluble proteins were
fractionated by SDS-PAGE (8% polyacrylamide gel) and were trans-
ferred to an Immobilon-P membrane. The membrane was immunob-
lotted with anti-phosphotyrosine mAb (A) and then stripped and im-
munoblotted with Ab against the p85 subunit of Pl 3-K (B). Open
circles indicate tyrosine-phosphorylated proteins, and the arrow indi-
cates p85. The migration positions of m.w. markers are indicated. Data
are representative of five independent experiments.

pathway, may be crucial for cytoskeletal rearrangement and gran-
ular exocytosis at the site of effector-target cell conjugation. There-
fore, we examined the effect of a specific inhibitor of PI 3-K,
wortmannin, on CD2-mediated BLTE esterase release. The data
demonstrated that wortmannin inhibited CD2-mediated granular
exocytosis in a concentration-dependent manner {data not shown)
and that treatment of cells with 1077 M wortmannin also essen-
tially abrogated the CD2- as well as CD16-mediated granular exo-
cytosis (Fig. 1C). These results suggest that PTKs and PI 3-K are
both involved in CD2- and CD16-induced granular exocytosis.

Cross-linking of CD2 induces tyrosine phosphorylation of
cellular proteins in NK3.3

To ascertain whether stimulation through CD2 activates PTKSs in
NK3.3 cells, CD2 was cross-linked, and tyrosine-phosphorylated
proteins were analyzed by Western blotting using anti-
phosphotyrosine Ab. The data (Fig. 24) demonstrated that cross-
linking of CD2 as well as CD16 triggered tyrosine phosphorylation
of several cellular proteins migrating with apparent molecular
mass of 160, 140, 120, 105, 90, 72, and 56 kDa, suggesting that
these receptors may use similar signaling pathways. In contrast,
cross-linking of LFA-1«, LFA-13, or CD45 or of CD28 as a neg-
ative control or use of an isotype-matched control IgG1 induced no
detectable increase in tyrosine phosphorylation of cellular proteins
in NK3.3 cells. The same membrane was stripped and immunob-
lotted with Ab against the p85 subunit of PI 3-K. Although con-
siderable amounts of p85 were detected in lysates (Fig. 2B), ty-
rosine phosphorylation of a band corresponding to p85 was not
observed in any of the NK3.3 cell lysates (Fig. 24, arrow).
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Cross-linking of CD2 activates Syk in NK3.3

It has been reported that CD2-mediated signals depend in part on
the CD3 {-chain, a signal-transducing subunit of the TCR/CD3
complex, and that CD16 on NK cells is functionally equivalent to
the TCR on T cells for coupling CD2 to its signaling pathway (10,
32, 33). At least four PTKs have been shown to be implicated in
the TCR/CD3-mediated signal pathway: two kinases of the src
family, Lck and Fyn, and two of the Syk family, ZAP-70 and Syk.
The recruitment of the Syk family tyrosine kinases, ZAP-70 and
Syk, to the TCR/CD3/{ complex is probably a key step in the
CD3-mediated signal transduction, most likely by an interaction
through SH2 domains (20). Therefore, we examined whether
cross-linking of CD2 activates Syk in NK3.3 cells. Cells were stim-
ulated by cross-linking of surface receptors for 3 min, and deter-
gent-soluble proteins were immunoprecipitated with anti-Syk
mAb, resolved by SDS-PAGE, and immunoblotted with anti-
phosphotyrosine mAb (Fig. 34). The same membrane was stripped
and immunoblotted with anti-Syk polyclonal Ab (Fig. 3B). The
results indicated that tyrosine phosphorylation of a band corre-
sponding to Syk was induced by cross-linking of CD2 and CD16
(Fig. 3A). We then examined Syk kinase activity using an in vitro
kinase assay. Figure 3C revealed that cross-linking of CD2 mark-
edly increased Syk kinase activity using MBP as substrate (1768
PSL U/mm?), and cross-linking of CD16 moderately increased Syk
activity (1280 PSL U/mm?) compared with engagement of other
surface receptors or treatment with control IgG1 (991, 923, 638,
and 765 PSL U/mm? for LFA-18, CD28, CD45, and control IgG1,
respectively). The less marked Syk activation as a result of CD16
cross-linking compared with CD2 cross-linking may be due to the
differential surface expression of CD16 and CD2 on NK3.3. FACS
analysis revealed that the intensity of CD16 expression on NK3.3
cells is substantially lower than that of CD2 and LFA-1 (data not
shown). Therefore, CD16 cross-linking may not be sufficient to
activate Syk in NK3.3 cells.

Cross-linking of CD2 increases the association between Pl
3-K and tyrosine-phosphorylated proteins

It has been reported that tyrosine phosphorylation of p85 is in-
duced by platelet-derived growth factor or IL-2 stimulation and
correlated with increased PI 3-K activity (34, 35). Since our West-
ern blotting experiments did not reveal increased tyrosine phos-
phorylation corresponding to p85 after cross-linking of CD2 (Fig.
24), we immunoprecipitated p85 and examined its tyrosine phos-
phorylation to verify whether cross-linking of CD2 directly in-
duces tyrosine phosphorylation of p85. These data also revealed no
tyrosine phosphorylation of p85 after cross-linking of CD2 or
CD16 (data not shown). p85 is reported to contain two SH2 do-
mains and bind to tyrosine-phosphorylated YXXM motifs (17, 36).
Therefore, we examined the possible association between PI 3-K
and tyrosine-phosphorylated cellular proteins following cross-link-
ing of CD2. NK3.3 cells were stimulated by cross-linking of
surface receptors for 3 min, and detergent-soluble proteins were
immunoprecipitated with anti-phosphotyrosine Ab and immuno-
blotted with Ab against p85. The data in Figure 4A clearly showed
that cross-linking of CD2 as well as CD16 increased the associa-
tion between PI 3-K and immunoprecipitable tyrosine-phosphory-
lated proteins. Anti-phosphotyrosine immunoprecipitates were
also examined for PI 3-K activity by in vitro PI 3-K enzymatic
assay, and radioactivity of spots relevant to PtdIns-P was estimated
with a Bio-Imaging analyzer. The results revealed that PI 3-K ac-
tivity associated with tyrosine-phosphorylated proteins was also
augmented following cross-linking of CD2 or CD16 (Fig. 4B).
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FIGURE 3. Cross-linking CD2 activates Syk protein kinase. NK3.3
cells (5 X 10%sample) were stimulated with the indicated Abs using
polybeads coupled to rabbit anti-mouse 1gG Ab at 37°C for 3 min, and
detergent-soluble proteins were immunoprecipitated with anti-Syk mAb,
resolved by SDS-PAGE, and immunoblotted with antiphosphotyrosine
mAb (A). The same membrane was stripped and immunoblotted with
anti-Syk polyclonal Ab (B). Arrows indicate the position of Syk and the
heavy chain of IgG (IgH). The migration positions of m.w. markers are
indicated. Anti-Syk immunoprecipitates were subjected to in vitro ki-
nase assay as described in Materials and Methods. Tyrosine phosphor-
ylation of MBP was monitored for evaluating Syk kinase activity (top
panel), and radioactivity within bands was also estimated by a Bio-
Imaging analyzer and expressed as PSL arbitrary units as described in
Materials and Methods (bottom; C). These data are representative of
three for A and B, and two for C.
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FIGURE 4. Association of Pl 3-K with tyrosine-phosphorylated pro-
teins induced by cross-linking of CD2. NK3.3 cells were treated with
the indicated Abs and stimulated with polybeads coupled to the rabbit
anti-mouse 1gG Ab at 37°C for 3 min. Tyrosine-phosphaorylated pro-
teins were immunoprecipitated with anti-phosphotyrosine mAb
(4G10) coupled to protein G beads. Precipitated proteins were frac-
tionated by SDS-PAGE and transferred to an immobilon-P membrane.
The membrane was immunoblotted with Ab against the p85 subunit of
Pl 3-K. Arrows indicate the position of p85, and the huge bands at M,
50 kDa are nonspecific binding of rabbit 1gG used for cross-linking of
receptors. The migration positions of weight markers are indicated (A).
Immunoprecipitates, obtained as described for A, were assayed for Pl
3-K activity as described in Materials and Methods. The reaction prod-
ucts were subjected to TLC and visualized by autoradiography. Radio-
activity within spots of Pidins-P (PI-P; top panel) was estimated by a
Bio-Imaging analyzer and expressed as PSL arbitrary units as described
in Materials and Methods (B). These data are representative of two
independent experiments.

Pl 3-KINASE IN CD2-MEDIATED GRANULAR EXOCYTOSIS
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FIGURE 5. Cross-linking of CD2 enhances tyrosine phosphorylation
of She. NK3.3 cells {5 X 10%/sample) were stimulated with the indi-
cated Abs using polybeads coupled to rabbit anti-mouse 1gG Ab at
37°C for 3 min, and detergent-soluble proteins were immunoprecipi-
tated with anti-Shc Ab, resolved by SDS-PAGE, and immunoblotted
with anti-phosphotyrosine mAb (A). The same membrane was stripped
and immunoblotted with anti-She polyclonal Ab (B). Arrows indicate
the positions of p46 and p52 She proteins, and the migration positions
of m.w. markers are indicated.

anti-She

Cross-linking of CD2 enhances the tyrosine phosphorylation
of Shc and increases Pl 3-K activity associated with Shc

She is an adapter protein that is widely expressed in all tissues and
contains an SH2 domain and a collagen-like domain but no obvi-
ous catalytic domain. Shc proteins of 46 and 52 kDa encoded by
a 3.4-kb mRNA are ubiquitously expressed, whereas a 66-kDa She
is likely to be encoded by a distinct She transcript and is absent in
some hemopoietic cells (37). Because this protein is phosphory-
lated on tyrosine residues in cells transformed by nonreceptor ty-
rosine kinases such as v-sr¢ and v-fps (37) and by cross-linking of
CD3 in T cells {38) or through the stimulation of growth factors,
we speculated that She might couple the PI 3-K and be involved in
the CD2-mediated signal pathway. To evaluate the role of Shc, we
determined whether She is tyrosine-phosphorylated by cross-linking
of CD2 in NK cells. Cells were stimulated by cross-linking of surface
receptors for 3 min, and She were immunoprecipitated, resolved by
SDS-PAGE, and immunoblotted with anti-phosphotyrosine mAb
(Fig. 5A). The same membrane was stripped and immunoblotted
with anti-Shc Ab (Fig. 5B). The results indicated that tyrosine
phosphorylation of 46- and 52-kDa Shc proteins was enhanced by
cross-linking of CD2 as well as CD16 (Fig. 5A). Specifically,
CD2-mediated tyrosine phosphorylation of Shc was observed in a
CD2 Ab concentration-dependent manner, increased within 1 min,
and peaked at 3 min (data not shown). To ascertain the association
between She and PI 3-K, anti-Shc immunoprecipitates were also
examined for PI 3-K activity by in vitro PI 3-K enzymatic assay,
and radioactivity of spots relevant to PtdIns-P was estimated by a
Bio-Imaging analyzer. The results revealed that PI 3-K activity
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FIGURE 6. Cross-linking of CD2 increases the Pi 3-K activity asso-
ciated with Shc. She immunoprecipitates, obtained as described in
Figure 5, were assayed for Pl 3-K activity as described in Materials and
Methods. The reaction products were subjected to TLC and visualized
by autoradiography (top panel). Radioactivity within spots of Ptdins-P
(PI-P) was estimated by a Bio-Imaging analyzer and expressed as PSL
arbitrary units as described in Materials and Methods (bottom). These
data are representative of two independent experiments.

associated with Shc precipitates was also augmented by cross-link-
ing of CD2 as well as CD16 (Fig. 6).

Discussion

Although CD2 is believed not only to serve adhesion functions by

binding its ligands CD48, CD38, and CD59, but also to generate
transmembrane signals during the activation of T cells and NK
cells, there have been conflicting reports about the signal trans-
duction ability of CD2 on T cells and NK cells. The anti-CD2 mAb
(IgG3) in the form of F(ab’), is reported to have no effect on
cytoplasmic calcium influx and cytolytic activity in NK cells, and
the trace amounts of contamination of cross-linking Ab in the form
of whole IgG have been found to induce calcium influx (9, 10),
suggesting that bridging and comodulation of CD2 and CD16 may
be required for CD2-mediated signal transduction. In our assay, we
used the isotype-matched Abs (IgG1) against CD2, CD16, LFA-
la, LFA-18, CD28, control IgG1, and cross-linking Ab in the
form of whole IgG. In contrast to the effects seen by cross-linking
CD2 or CD16, we could not detect a significant increase in BLTE

esterase secretion (Fig. 1), tyrosine phosphorylation of cellular

proteins (Fig. 2), or Syk activation (Fig. 3) by cross-linking of
LFA-1a or LFA-18 or by use of control anti-CD28 or control
1gG1, suggesting that the nonspecific binding of the Fc portion of
Abs 1o CD16 did not stimulate NK3.3 cells. Furthermore, co-cross-
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linking experiments with anti-CD2 and anti-CD16 Ab revealed no
synergistic effects on either granular exocytosis or tyrosine phos-
phorylation of cellular proteins (data not shown). Therefore, we
concluded that multivalent cross-linking of CD2 itself was suffi-
cient to transduce signals in NK3.3 cells and may represent another
means of triggering a similar response to that through CD16.

CD2-induced signaling events depend on the cytoplasmic do-
main of CD2, which is relatively large (116 amino acids); is highly
conserved among humans, rats, and mice; and lacks intrinsic ki-
nase activity (39). The remarkable capacity of CD2 to activate T
cells and NK cells raises the possibility that, like CD3/TCR, CD2
interacts with cytoplasmic PTKSs. Previous studies revealed that
CD2 and CD16 are functionally and physically associated with the
src family tyrosine kinases, Fyn and Lek (28, 40, 41), and induce
tyrosine phosphorylation of PLC-y (8, 27). Recently, Bell et al.
clearly demonstrated that the SH3 domain of Lck binds to proline-
rich sequences in the cytoplasmic domain of CD2 (42). It has been
reported that signal transduction via CD2 in NK cells is dependent
in part on the CD3/{-chain, a signal-transducing subunit of the
TCR complex, or the 7y subunit of CD16, which is homologous to
the CD3/¢-chain (10, 33, 43). The current model of T cell activa-
tion is based on a sequential interaction of src and Syk family
PTKSs with the TCR/CD3/{ complex, which by itself lacks intrinsic
kinase activity. Lck or Fyn is thought to be responsible for the
tyrosine phosphorylation of the CD3/{-chain on the immunorecep-
tor tyrosine-based activation motif (ITAM; YXXL-based se-
quences interspaced by six to eight amino acids) that is present as
three copies in each ¢ subunit and as two copies in y subunit of
CD16, which lead to recruitment of the tyrosine kinase ZAP-70,
most likely by an interaction mediated by SH2 domains (20). Syt
is structurally homologous to ZAP-70, with two tandemly arranged
SH2 domains and a C-terminal kinase domain (44), and a similar
mechanism of recruitment has been proposed for Syk. Syk has been
reported to be activated by various receptors, such as CD3/TCR
(45-47), BCR (48), FceRI (49), and FcyRIIA (50). In NK cells,
engagement of CD16 has been reported to induce tyrosine phos-
phorylation of cellular proteins (51) and to increase the catalytic
activity of both ZAP-70 and Syk (52, 53). Therefore, we examined
whether cross-linking of CD2 activates Syk in NK cells, and we
found that cross-linking of CD2 or CD16 enhances tyrosine phos-
phorylation of Syk and activates its kinase activity against MBP
substrates (Fig. 3, A and C), suggesting that CD2 and CD16 use
similar signaling pathways,

Involvement of PI 3-K in CD16-mediated signal transduction
and granular exocytosis in NK cells has been reported (12, 13).
Our results extend these analyses by demonstrating that cross-link-
ing of CD2 as well as CD16 stimulates Syk kinase activity (Fig. 3,
A and C) and enhances tyrosine phosphorylation of cellular pro-
teins and an adapter protein, She (Figs. 24 and 54), resulting in the
increase in PI 3-K activity associated with tyrosine-phosphorylated
Shec (Fig. 6). Although we could not detect tyrosine phosphoryla-
tion of p85 in NK3.3 cells, we have observed increased PI 3-K
activity in phosphotyrosine immunoprecipitates following cross-
linking of CD2 or CD16, as reported for CD3 stimulation of T cells
(54, 55). The p85 subunit contains two SH2 domains that bind to
tyrosine-phosphorylated YXXM motifs, one SH3 domain that
binds to the proline-rich region of src family kinases, and two
proline-rich regions that are docking sites for SH3 of src family
PTKSs (17, 36). Thus, PI 3-K participates in the assembly of signal
transducing complexes through multiple association sites. Al-
though Shimizu et al. have reported constitutive association of PI
3-K and CD2 in a CD2-transfected cell line (56), we found PI 3-K
associated with CD2 in CD2 immunoprecipitates as well as in
control immunoprecipitates (data not shown). Therefore, our data
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do not support a specific association between PI 3-K and CD2 in
NK3.3 celis. A possible alternative explanation for the participa-
tion of PI 3-K in the CD2-mediated signaling and granular exo-
cytosis may be that the SH2 domains of the p85 subunit bind to
tyrosine-phosphorylated receptors and/or adapter proteins. It is re-
ported that full activation of PI 3-K occurs only when both SH2
domains of p85 are occupied by tyrosine-phosphorylated YXXM
motifs, and partial activation occurs when either SH2 domain is
occupied (57, 58). We speculated that She, an adapter protein, may
associate with and regulate PI 3-K activity, because it has been
reported to be phosphorylated on tyrosine residues by Syk as well
as other PTKs (59, 60). Shc has also been reported to associate
with PI 3-K or to be involved in the assembly of signaling com-
plexes that include PI 3-K following stimulation through CD3/
TCR, BCR, or cytokine receptors (37, 61-63). Therefore, we ex-
amined whether cross-linking of CD2 increases Shc tyrosine
phosphorylation and mediates the association between PI 3-K and
She. The results clearly demonstrated that cross-linking of CD2
increases tyrosine phosphorylation of Shc (Fig. 54) and enhances
PI 3-K activity associated with Shc (Fig. 6). We examined Grb2-
associated PI 3-K activity and found that no remarkable change in
PI 3-K activity was induced by cross-linking of CD2 or CD16.
Furthermore, we examined the Grb2-associated molecules by
binding assay using glutathione-S-transferase fusion proteins of
Grb2 and found that Grb2 associated with Shc, but not with PI
3-K. These results indicate that neither direct association of Grb2
and PI 3-K nor a trimolecular complex of She, Grb2, and PI 3-K
was formed in significant amounts {data not shown). Although
several reports have indicated the physical association of PI 3-K
with src family PTKs (15-17), we propose an additional mecha-
nism for the involvement of PI 3-K in the CD2-mediated signal
pathway: 1) cross-linking of CD2 as well as CD16 activates Syk
directly or dependent upon tyrosine phosphorylation of the y sub-
unit of CD16 through Lck activation; 2) activated Syk induces
phosphorylation of She on tyrosine residues; and 3) full or partial
activation of PI 3-K is mediated by association with Shc via SH2
domains of p85. '

In conclusion, we have clearly demonstrated that CD2-mediated
granular exocytosis in NK cells is dependent on PTKs and PI 3-K
activity, since herbimycin or wortmannin strongly inhibited or
completely abrogated CD2-mediated granular exocytosis. More-
over, we have observed that cross-linking of CD2 increases Syk
kinase activity and enhances tyrosine phosphorylation of cellular
proteins such as Shc, resulting in increased PI 3-K activity asso-
ciated with She. These results suggest a potential role for Syk and
PI 3-K in the CD2-mediated signal pathway and granular
exocytosis.
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Fig. 1 a. Amino acid sequences for HCV HVR-1 and HVR-2. The consensus sequences
for the predicated amino acid of the mother is shown by a single letters on the top line. A

dotted line indicates identical residue to consensus. * indicates stop codon. m indicates

mother. ¢ indicates child. The regions enclosed in boxes indicate HVR-1 and HVR-2.
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Fig. 1 b. Amino acid sequences for HCV HVR-1 and HVR-2. The consensus sequences
for the predicated amino acid of the mother is shown by a single letters on the top line. A

dotted line indicates identical residue to consensus. * indicates stop codon. m indicates
mother. ¢ indicates child. The regions enclosed in boxes indicate HVR-1 and HVR-2.
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The phylogenetic analysis. The length of the horizontal lines indicates the
relative evolutionary distance befween the sequences. Broad fines in trees
show the sequences from GenBank. C1-8 and M1-8 mean the children and
maothers of family 1-8, respectively, A 1o U indicate the sequences of cDNA
clones from GenBank. A: D12953; B: D1295&; C: X72979; D: D50481; E: DS0485;
F: D10075; G: U14228; H: D13970; I: E04897: 1 DO0T44; K: D13406; L: X60581; M:
D10934; N: D10750; O: EQ6188; P: X60589; Qi X60579; R: D12958; $: D12965; T:
X60582: U: E07544; V: D89872.
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